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SUMMARY

A higher order t_eory of the motion of close satellites in the vicin-

ity of the critical i_cLination is developed for the case of small ec-

centricity as well a,i moderate eccentricity. Terms up to the third

order of magnitude are included for a potential which is plane sym-

metrical. It is shown that solutions up to this order can be obtained by

using only Jacobian < lliptic functions for the case of small eccentricity.

However, for modezate eccentricity, elliptic integrals of the second

kind or the Jacobian zeta-function are required. To obtain further ap-

proximations, ellipti,: integrals of the third kind are necessary for the

case of small eccent:icity; but, for the case of moderate eccentricity

only the Jacobian ell ptic functions and elliptic integrals of the second

kind are require0. Il any case, the solutions are, in general, periodic

functions--as is well known from the form of the equations of motion.
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A CONTRIBUTIONTO THE THEORY OF CRITICAL

INCLINATION OF CLOSE EARTH SATELLITES*

by

Shinko Aoki _

Goddard Space Flight Center

INTRODUCTION

Many authors have shown their interest in the motion of close earth satellites near the critical

inclination (for example, References 1-5). However, almost all of these authors have considered only

the first terms, which are of the order of the square of J_ in the equations of motion. However, it was

first shown by Izsak (Reference 5) that continuations of the ordinary treatment of the libration to the

higher approximations would break down; and, in the case of small eccentricity, some libration of a

peculiar kind including the next orcer of magnitude would occur. The first term, which has e02 as a

factor, is so small that the next order term--which would be considered as a higher order of magni-

tude in the normal case--becomes the same order of magnitude as the preceding term. However, he

presented this only for a consideration of the form of the Hamiltonian; he did not try to solve the

equations of motion with time as the independent variable.

Here some expressions for the se solutions will be presented, not only for the case of small ec-

centricity, but also for the normal case including terms up to the third order of J2 in the original

equations of motion, where J2 is the coefficient of second zonal harmonics of the earth's potential and

J4 is assumed to be of the order of the square of J2 and, further, J6 to be of the third order of magni-

tude. The odd harmonics will be totally neglected. A higher order theory including these terms is

under consideration, but must be treated in the future.

The method adopted is to introduce intermediary solutions, of which the argument _u is only

slightly different from time (the inJependent variable) except for a constant factor, and such that by

which the amplitude of the libration or the change of states--in other words, a transition from revolu-

tion to libration--is fully determined. In the case of small eccentricity, the intermediary solution can

be obtained by the following integration:

d(_ 1

= ),du ,

"Published in substantially the same form in A: tronom. ]. 68(7):355-364, August 1963.
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where rr/2 - _ is the mean value of the argument of perigee and ,\ is constant; this integration can be

performed even if only the Jacobian elliptic functions are used, as will be seen in a later section.*

Further approximations, beyond the aforementioned order of magnitude, would require more com-

plicated calculations. Some comments will be made on the subject although explicit formulas are not

included. Izsak, after removing the so-called periodic perturbations, wrote the equations of motion:

-- x --
dr- &z: '

dec 3O

where _ is the mean value of the argument of perigee; p is some function of G, the conjugate variable

to (4 and

: A(,_) + j B(p) cos 2c_ ,

A(p) : fi2 + E a fin ,
3

n(;} = _ 2. p" ,

:_o eg [1+o_j)1 ,

,,_', 2 [1+ocj)] ,

j _ if_,_,2)-s\37 +J P°-_ > o,

3 J2 no

: 4 _p0 2 (t-to) "

Since , has a factor of J2, the terms of the order of j in ¢ correspond to those of the order of J2 2 or

J4in the original equations of motion.

In this paper we have started with a Hamiltonian similar to the one used by Izsak but have added

some additional terms in order to more easily consider the higher order terms; although this explicit

evaluation, from the coefficients of zonal harmonics of the earth's potential and from the integration

*A list of symbols is given in Appendix A.



constants, is not given. We are concerned with the solutions of the equations of motion which contain

the Hamiltonian up to the order of j 2:

q_ : A(/) + jBlp]cos2c_: + j2C(p)cos 4c_ ,

although some comments will be made on obtaining higher order approximations.

EQUATIONS OF MOTION

We shall now consider the following equations:

where

dp 0q_ t

d'r : 0_ '

dec 0_

d_ : -_-p '

(1)

A(,c;)

dO = _(p) + jB(picos2c-÷ j2C(p)cos 4c_ ,

co

: //..._ O.n pn ,

B(p) :: ._V ;?/"
0

C(/:) E' y" '

and &n' :_n' "_n are constants which satisfy a 2 > 0, #0 > 0.

In order to remove the first degree term of p in the Hamiltonian function, we change the variable

_ to ) : _- P (cos2 0,) such that

O@_)x : O(0@_) : O. (2)
=0 p=p

If we take the terms up to j 2 in Equation 2, we have

j _1 cos2:. + j2 cos4<. + 2 (a2 + j _2cos2rj)p + 3,aap 2 = 0



from which

Thus, the equations,

1 _1 1 Yl 1 filfi2 3 a3_

p _ __ j % _0_2_ + j2 _2-_-U_ 2 _2 8 _°_4_% / (3)

dx a_

dca O_

d'r - Oy

(4)

are obtained with

(x, oJ) = (I) (p+ x, o_)

= a 0 + a 2 X 2 + a 3 X 3 + a 4 X 4 j- . ..

where

a 0 : j/% cos (_1 - o)_ + j2 4-_12_2 I + _ cos 4_ __ ....

,)a2 : ct2 + J 2 - 2- ct3 /31 °'2" cos2 w + ....

a 3 = ct 3 + • . . ,

(5)

a4 : _4 + ....

We have considered terms up to the order of j 2 in _, assuming x is the order of j 1/2. We know

that

: jr. (6)

where r is constant, is an integral of Equation 4. Neglecting higher order terms, we can easily obtain

an expression for x from Equation 6:

1 (_ 1 _ S a_2)X : X1 - 2 a3 a2 "1 X12 + _- a4 a2 1 + -8- a32 X13 ' (7)



where

Rewriting ×12 in the form

12

where

= F c,2- 1 ,

PI = F-1 /30+Jr _2a-i+ 2-a3fll

'1 _ 2/QI = iV-' ,_-fl12a2_-_o+/30f12a_1--_'-a3,80fl_; ,

and putting _1 : _/2- _, we have

do) 1

2a2x + 3aax 2 + 4a4x 3

d(._ 1

2a 2 ]_1/2 XO + a3 a2 1 p l/2 XO + (-_ 0"4 a2" 1 _ -_- a32

= d'7- ,

(8)

where

X0 = a2 a2-1 -V2 X1

iz. + Psin 2w I +Qsin 4_I

p : - _o _-1 + j 20"2 1-_-0"3/_10" 2

Q = i _-1 _12 _2 1 -- "_0 -- _0 _2 _2 1 -b _" 0.3 /_0 _1

(9)



INTERMEDIARY SOLUTIONS

From the denominator on the right side of Equation 8 we can see that it will be zero if, and only

if, x0 = 0, provided _ = o(jV) is small. This means that the essential character of the trajectory is

determined entirely by Xo. In the case when _1 is real--which includes, in general, j 2 terms of the

equation of motion. Thus, )Codiscriminates among three kinds of motion: libration, revolution, and

the critical case.

Therefore, we first must consider

Putting sin 2 wl

dw 1 dwl

¢1 + P sin 2_'1 + Q sin 4oj I ¢(1-asin 2c_',) (1-/3sin col)

= du .

: x, we have

(10)

and, putting y = x -1 , we have

dx

du =

2 ]/(1-xl x (1 +Px+Qx 2) (11)

or

du -:

- dy - dy

¢4{y-1) (y2 + py +Q) ¢4(y - 1)(y - al {y - _}

- dz
du

¢4 - o) - '

where

P-1
z = Y + 3 '

and

IP 2 P 1, _____ )(et, e , eh) = +_'_ct+ T _+ P 1

Thus, we have

z = _o(u - Uo)



where _u is the Weierstrassian elliptic function of the second order. We assume that the integration

constant is such that

u 0 : 0 ,

which corresponds to the initial ccndition of _,_, = 0 when u = 0, as will be seen later. Then we have

= (1 + fj2u)-i ,

or

cotcJ 1 = ±fj u ,

and

¢1 + Psin'oj1 + Qsin¢o_ l = gju • hju(1 + fj2u) -1

In the above expressions, fju is all associated primitive elliptic function of the first order (Reference

6), whose poles are u = 0 and 2_ and whose zeros are u = _,t and % + 2._% within a parallelogram

(2%, 4_g) , where we have

o.p

co

:f
p

dz

¢4(z- e,)(z- %)(z- eh)

with p = f, g, h and o_t + o_ + _oh = 0. The other gj u and hj u are given by permutations of (f, g, h).g

However, this expression is ,;o general that, at first glance, we cannot see how the function be-

haves for real values of u, which is the only case of interest. Therefore, in order to clarify its

behavior, we shall divide the proklem into several cases.

(i) _, fi real: Libration and critical cases

(a) l_<_<.__<y, libration within - c_-1/2 _< sin_: 1 < ,_-,/2

Since

P-1 a- 1

_U = 1 + _ + _ )t_.u, k ,sn 2 (12)



where x _ = a-1 andk 2 = (fl-1)/{a-1), we have

and

sin2 _1

sn 2 (_vu, k)

(13)

(_- I) cnku dnXu

Xo = ¢1 + Psin 2_1 + Qsin4_l =

a-cn 2 _ u, k)

The case 1 _<y _<fl<_ a does not correspond to any real case in the theory of the critical inclina-

tion of close artificial satellites (Reference 5); therefore, we omit this case here, although similar

expressions are obtainable if we substitute sin _ = cos % instead of sin % in Equation 1.

(b) fl<l<a<y, librationwithin-_-l/2 <_ sin_l < a-1/2

Since

P-1 a-fi

_u : _ +_-- + _n2 (X_,k)

where x 2 = a-fl andk2 = (1 -fi)/(a-fl), we have

and

sin2_a

sn 2 (Ku, k)
z

a-flcn 2 (Xu, k)

Since

%0

(a-fl) cn(ku, k)

a-_cn a (Xu, k)

(¢) f_<a< l_<y, revolution

P-1 1-fl

_ou = fi + T + sn 2 (ku, k) '

where 4 2 : 1-fiandk 2 = (a-fl)/(l-/3), we have

sin 2 w 1

sn2(Xu, k)

1 - fl cn 2 (Xu, k) '



and

X0

(1-,,5) dn t,\u, k!
z

1-;3cn 2 (,\u, k)

(a9 1 < _ +_5 y, critical

Since sn Xu _ tanh ku when k - I, we have

s in 2 ¢c,1

sinh2,ku
=

a cosh 2 Xu - i

where x 2 : a- 1 and

a-1

x0 a cosh 2xu- 1

(b 9 _ <1 : a < y, critical

From either case b or c, when k _ 1, we have

sin 2 c_ 1

sinh 2 )vu

cosha,ku-fi

and

: (!-fi) coshXu

x0 cosh 2 ku-fl '

where 4 2 : 1 - ft.

(ii) _, /_ imaginary: Revolutim_

Here the direct transformation from _,,-functions to Jacobian elliptic functions does not give a

real function. Therefore, another type of transformation is used, as is described by Whittaker

and Watson (Reference 7, p. 513), since p and Q are real.

If we apply the transformation

where

x - B
y : Cx_A ,

-1- t/'i-+P+Q
A -- p + Q ---,



- 1 + Ir-I+P+Q
=

P+Q

C
-2 - P - Q - 2 "I/_-+P+Q

P+Q

to Equation 11, we then have

where

du

de) 1

1 + Psin2e) 1 + Qsin4e) 1

= dy

24 ¢0-y 2)

X 2 : fl + P + Q : l/_l-a) (1-/3) ,

k 2

- P - 2 + 2 _+P+Q a +/3 - 2 1

4 lri-+ P+Q 4 1/(1-al (1-_)

Accordingly, we obtain

It should be noted that the form of y in Equation 14 yields a real function, when k2 > 0 and 1 > ks >_0 .

This is made possible by choosing an appropriate sign of the above root function (which is, of

course, a double-valued function) in such a way that

lrl+P+Q > 0 ;

this is possible because P and O are real and satisfy the inequalities

1 + P + Q : 1 + _ (p2_4Q) 2 0 ,

(P+2) _ ! 4[I+P+Q)

since

A = p2 _ 4Q < 0 .

10
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Choosing the integration constant % = O, and using the addition theorem, we have the following

expressions:

X z SIR2 _:'1

sn 2 (ku, k)
7

1 - cn 2 }vu + _2 cd 2 ,*vu

and

X0

_,2(1 - k 2 sn 2 Lu cd 2 Lu)
z

I - cn 2,\u + X 2 cd 2,\u

Consider the critical case when the descriminant A goes to zero. If - P = a + _ > 2, then k s

approaches to unity; and the above expressions, of course, tend to Case i_. On the other hand, if

-P : ,_ +.,,_< 2, then k s _ 0; and this case tends to be a special case of Case ic.

(iii) _ = _ : 1 , critical.

In this case Equation 10 may be expressed directly as

dQ2

sin 2 &,

from which we obtain sin_ = 1/_/_ + 1 , or

all ,

U

sin&_ 1 : __ ,

_+1

where the integration constant is chosen such that % = 0when u = 0. Consequently,

1
= COS2 O01 =x0

u2+l

Table 1 summarizes the data from the three cases.

THE CASE OF SMALL ECCENTRICITY

If/30 (_ e:) and F are of the same order of magnitude as j, then the argument given for the equa-

tions of motion becomes somewhat simpler because _ is of the order of j so that the terms % 3 and

% x 4 in Equations 5 are negligible provided we include terms up to the second order in these equations.

Moreover, in the expressional02 it is sufficient to consider only terms up to the second order. In

the case of small eccentricity near the critical inclination, Y0 itself (Equations 5) would be of the

order of j2, which is also negligible (Reference 8).

Thus, in this case, the intermediary solutions described in a previous section would give suf-

ficient accuracy provided that we take Equations 1 to the second order.

Now putting _0 : j/3_, F : j F' we have

s
P = -/30 I.... '

12



1

from which we obtain

j_ :: j2i_,_2-1 ;

From Equation 8 we have

I_,.:! : _,2o !''-_ ± -7'v_ 2 _'o 2 _ .

where

u : 2a 2 (y r ,

If [" > :i'o'2 ':_2z_-2, ,_and _ become ir_aginary so that this case corresponds to the Case ii.

On the other hand, _' < S 0' 2 '_ 1-: corresponds to Case i or Case iii. The subdivision within Case i

can be obtained easily

_ _ Z o

if ,zo - 4% < r' < T , then Case ia;

if

/_ 12

0 < i-' < Yo 4a 2 then Case ib;

and if

/312 '_
P' -. ;_'0 -_ and , then Case ic.

Rewriting the above and combininl,_ it with the real/imaginary criterion results in the following scheme:

Case A

[_12 _' ., 2 c_ 2, ,'_o /L;,12 _ 'o

_" :, or < 3 o - -
o Yd-% _- _7 2 _ 12

13



?!12

if 0, 7' , J" - --
, o 4, 2 , then Case ib;

2 /_0' 2 z2]

if %' - _ < !-' <--:z2 , then Case ic;

_'2& 2

if o then Case ii.-- < [',

12

Case B

'_";'12 '_' 12 L_'O' 2 ':_2 /?0'

2

if 0 < [_' < //o' - 4-_2' then Case ib;

/:_12 _30, 2 ,:_ 2

if ,_o' - _ < V' <--',:_ 2 then Case ia;

/;0' 2 _2

-- < V' then Case ii.
i f :_12 ,

The critical cases are easily obtained by comparing the above scheme with Table 1. In order to be

able to distinguish between the different cases, a diagram is drawn with the parameters expressed by

r, and :_0' in units of ::_12//4_2 (Figure 1).

Now, the period of sin:_, in terms of -7is given by

4K
T :

2_21/2 j [_, 1/2 :i

where the complete elliptic integral of the first kind,

i_/2 dC_'l 1 12- 1 )
K : 0 ¢ i-k2 sin2 "t : _F ' 2- , 1, k 2 . (15)

Accordingly, if in Figure 1 we take a point which is moving around the critical point iii in a

counterclockwise direction, we will find the change of the period and of the character of the motion as

given in Table 2.

14



In any case the solutions of Equations 1 up

to the order considered here, are given in case

ia by using Equations 3, 7, 9, 12 md 13;

srt 2 _-u

cos 2 co = sin 2 o0 1 _
,:z cn 2 _u

1 fit sn 2 ?vu

- -2 J % _ - cn 2xu

V1/vFT (a- 1) cnkudnKu
+ i

c_ - en 2 _.u

where

CASE B CASE A

F'= _]0'2012

2 _

-gl _ //

l ,// _,

1 3

4 #0'a2

fll 2

Figure 1--Criterion for several cases, expressed by pa-

rameters P' and _0' in un;ts of (1/4)_?12a 2 I) The respec-
tive cases are described in Table 1."

' .....l,

k2 _-1- a _ g , £u : 2_-7_ C_21/2 ]-', 1/2 jr .

For the other cases, we can easily obtain the results from Table 1 in a similar manner.

Table 2

Behavior oF the Period and the Character of the Motion.

Case ii a'

Period T

Character*

Remark

/
C

k = 1

a b b

_Nk ('_-1)["- 2a, j

fi : 1
k : 0

*The abbreviations are as follows: Revolution, Critical, and Libration.

b' c c ii

C

k =

"_ 27r
1-_)F' • 2_,

R R

k = 0

15



THE CASE OF MODERATE ECCENTRICITY

In this case, we expand _ and /: into power series in j. From the expressions of Equation 9 it fol-

fows, by neglecting high order terms, that

_3 0 )'0

c_ F - J +'_;']_o - '

/3
1 ,"I Yo _._ a__ .

: J %+/

Here, except for the critical case, we have only one of two cases: ib or ic

t (16)

Case ib: Libration

From Equations 8 and 10 we obtain

du

/3% 7

from which, expanding it into a power series in /+,f2, we obtain

2a 2 _/2 dv
(17)

_ __ , I/2 _ _ : 2a 2 _zl/2du a 2 _ XO 2 _22 8- /_'X d; ,
(18)

up to the order ,, = OI j , which corresponds to j 2in Equation 1. We also have, from Equations 7

and 8,

Now, putting

into Equation 18 and using

_x 3

¢7 1 : _L 2

_r 2

3 _4 15 %2

2 ct
2 8 _ 2 2

Xo cn ;vu to the required order, we have

du 0 + c_t ;,1/2 cn >,u +<r 2 _.cn 2 :\u) := 2ct2 _ 1/2 dr

du I "

(19)

16



It is known that (Reference 9, pp. 58 and 62)

f0 cnvdv = k -1 sin !k Shy _, , 0" k 2 .: 1 ,

_v

I CHV2 (iv k-2 [E{v) - k'2v 1
0

where E(v) is the elliptic inteI,_ral of the second kind such as

E(v) : dn2 vdv .

Accordingly,

( s) i l,,2 k-1 sin-1 (k sn _t2:, * k -2 ;_Z(,ul (20)

Z(v> :: E(v) - EK1 v ,

s 1 e k -2 (EK -1- 1) ,

77,/2E (1 -- k 2 sin 2 v) 1/2 dv
,¢0

(21)

and K is given by Equation 15.

Equation 20 has a form

(_ 1 1: F _,_ ; 1 ; k 2 ) ,

_t h _ (1 + _2 _) u _ (periodic terms in _u with the period 4K).

Therefore, by inversion, it follo_ls that

....u ,'_, u, + (periodic terms ill *, u,) ,

17



where

Thus

where

_u _? - cr 1 _ k-lsin-I(k sn _-)

+ a/p. cnzJ?k -1 sin-lIksn_71 - a2i_k-lZ(_ ) ,

(22)

andk 2 : (1-fi)(a-fi)-I

and _, fl by Equations 16.

= 2a I ¢_ kl

: 2_ _2 jv2Fv2 c_-/3) _/2 (1-%_) ,

The other notations, % and c_2, are given by Equations 19; s by Equation 21;

Then,

X : COS 2 a;

- Z c- 2(_u,k)

1..<× : - _o _ - c. _ - _ _-5- _._ _u

*_or %9---7-To-2 _ +8 _'_ x •a2 /

Therefore, we have, neglecting higher orders, the following forms as the solutions of Equation 1,

COS c_,

- k_O] 2fi0 k4 _---_0-70 eL2 * 2 al / sn3ku '

% _---_- cn _u - "_--¢22 j cn a Xu

-2%& J_"_+ _o_%_o Zo

18



where _u is given by Equation 22 The order of magnitude adopted here corresponds to the second

order of Equation 7.

Case ie: Revolution

In this case a formula simil_ r to the aforementioned one can be given:

1/2 dn \1! + flD 2 _'dl) :: dtl 1 ,du I + _1 ;_ 'v2 "-

from which we have

:= 1/2
'U I _,tl _ 1 " am _1 _ c 2 _ E( _.u

1 1/2 _'_ K-1 + , ,_ EK-1)_", ," 2- 2, :'" (23)

1/2 k -2 Z(",.u)

Putting

(1, 1/2 {1 - /i 1/2 1/2 K- l EK- - 1

we have, by inversion,

tq 7,, K -1 )
1/2 m ; ,' -

' )t :2- ,)'1 - m_; - K -1 : - , 2 ," Z:: 1 ,

where

k 2 i _ -.') 1-.)-1

We note that _1" 1."2 ,'am _u, the second term of the right side of Equation 23, also contributes to the

12k-1change of the period-contrary to Case ib, where the corresponding term, 1 '• si,_-_ :k s;, ,,': , is

purely periodic provided 0, k 2 " 1. It is easily seen that, roughly speaking, Case c corresponds to

Case b where k _ I. At any rat_, for the former case we have the following solutions of Equation 1:

COS ,,' = Silt ,
1

S[I:LU 4 2 J 'x2" 0 ';0 a2 2 22 CD 2 _,t :

19



,_' P _ X'
1 1

i

jI ,'12 , 3/2 1 a4 5 "3 3
- j _, - sn 2 _u tin ','_u + --

_2'% _ _ g dn _.u .

GENERALSCHEMEOF THE FURTHERAPPROXIMATIONS

In order to solve the equations with higher order terms, it is first necessary to solve an equation

such as Equation 6 which contains these terms. Even if the original equations of motion are limited

to finite terms, the Equation 6-type of equation is, in general, an algebraic equation with cos 2, as the

unknown. When combined with the second equation of Equation 4, we find that Id/dT) (cos 2 ,)is equal to

an algebraic function in cos 2 The solution of a differential equation of this kind would involve

Abelian integrals--many valued functions, more complicated than the elliptic integrals. Therefore,

the solution becomes so complicated that we cannot see the general character of the motion at a first

glance. However, if we restrict ourselves to the solution of a real function, the complicacy would be
much reduced.

In this section we are concerned with the cases where the character of motion is quite similar to

the former cases, except for slight changes caused by the higher order terms.

Now, we consider the equations of motion in the form:

dx" oW

(kr &'l

where

and a,,

to the previous case if a 2,0 = '_2 •

j ao t';in2-:l, j)
I[1 +

(n : 2,3. "" I is a power series in j,a2 (sin 2 0) :
\ _:1 ' / a2,o

From the integral _- j I : 0, we obtain

X2 (1 +Va * )4 a22 _" n %n-2

O,°
and is a constant which corresponds

from which

2a2z W + Zbn)7 n •

1
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Thus, we have

d_

or

TI.-1 (1 v :!:Cn'_/n)-I d,,: 1 : constant • dT

If the solution of _i,-I,I,,1 du* could be obtained in a simple way, as in the previous cases, then

using u* as an intermediary parameter would be a direct extension of the previous cases. But this

integral is, in general, an Abelia i integral as we have just stated. A general treatment is not suitable

for practical purposes. As an al:ernative, we shall consider the following situations.

:_ : Case of moderate eccenl_'icity

Let a o(sin 2,,, O) ao, ,sin 2 ,,, no, , > 0 ;then the solution of a o(sin 2.,, O) - :: 0 is

sin2 '1

Now, we denote one of the sclutions by _-' •

(a0,1) -' : . (24)

-I 0 ,

the first approximation of which is Equation 24. We then have

where _1 : 4r'a2. o j . Therefore:

where _2 1- :_ sin2_hand

Now

_-111 ¢ ,5"/Lln/2 fn (sin2_l)_nl-ld,:_' 1

_:- I d_: 1

Here we again divide the probler_ into two subcases:

Case ib:

We have

,t>l

I 2-s in " 1

du .

/tl 1/2 dz .

(25)
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= cn( u,  ,J2)

= _ 1/2 ;

then

[1+ Z _zn/2 f n (a-t sn2 al/2 u) (cn n al/2 u)]-I du = _ _/2 dr

or

where _, is a power series in j with the coefficients polynomials in a-_ sn 2 _u. Therefore, the in-

tegration of Equation 26 is expressed as

u + ZBnfcnn?vudu : #11/27 ' (27)

where B n is a numerical constant. This integration is carried out by the use of the Jacobian elliptic

function and the Jacobian zeta-function (see Reference 10, p. 164). Thus, the final form is expressed

by

_u + a periodic function of ku =

where the constant factor in the right side is _/2 )v[1 + O( j )].

constant, r ,

This is an extension of Equation 20.

Case ic: a < l

From Equation 25 we have

therefore,

sin_v 1 = sn(u, a 1/2) ,

}/'l-asin2wl = dn(u, at/2);

[1 +Z_zn/2 fn(Sn2u ) dnnu]-ldu = ball/2dr
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or

I 1_ ( i_n"2 _n (sn 2 tl) (_11 n ,_ _]tl :_ |1 2 d'r .

In this case we have, instead of Equation 27,

u _ EC_ Idn_,,lu : {--I"T

where the integration will be carried out, as above, by using the Jacobian elliptic function and the

Jacobian zeta-function. Thus we _ave

u • a periodic function of u = constant • T,

where the constant factor in tile right side again is .:_11 2 [1 + o!j/].

: Case of small eccentricit:

In this case the most important factor in 7"- a 0 (sin2 '_1' j) is not the 1 -:_ sin 2 '_1 term, as in the

previous case, but is (1-_si, 2:, ) (1-2sin 2,),where both _ and are of the order of 1. Therefore

we cannot expand each of the above factors into power series beginning with a constant term.

Or more concretely, hereafter no. t is assumed to be of the order of j : %1 = J co,1 and, also, it

is assumed that

lim J-I ao (sin2 J)j _0 _':1'

i
aO,1 S1112 _1 _ ;t0,2 SIFI4 ':"1 '

, . .... :-1 the solutions ofwhere Co. 1 corresponds to /_0', ard Co. 2 to - 14, _i 2 ._2-1 Also, we denote by _ 1, .....

a ° (sin2_.r j) - j [" : 0 ,

which approach the solutions of

r' - a' sin 2 - ao sin4 :zl : 0O, I "'1 ,2
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As before, we have

4a_ J IJF'-a0 (sin2°Q , J)l

where /q :: 4V' a2, o j 2. Therefore,

and, as before,

72 = _11_2 Xo (1 +Zfin sin2nrJ1) ,

:

Since xo-' d% : du, we have, for case i (except for the critical cases):

sn2(Au, k)

x = sin2% (29)
p-q cn 2 (Xu1_'

where _, k, p, and q Call be obtained in Table 1, according to the respective cases. Further,

(p -q) cn E1 Ku dn e2 \u

X0 = p - q cn 2 ()vu 1 k) ' (30)

where el, c 2 = 0 or 1, but both are not zero at the same time.

Now, from Equation 28 we have

1 + E#I n/2 f (X)Xo n]-1 du : >11/2 dr

or

II+ Z#ln/2 gn(x) Xo" 1 #l 1/2 ,
du dr

where g. is a polynomial of x. Thus, for n even, g. has the form

(31)

24

gn : GI (sn2 _u) , (32)

where G, denotes a rational function of the argument. The integration of Equation 32 produces an el-

liptic integral of the third kind, in general, unlike Case a (Reference 10, p. 164). On the other hand,



for n odd,

I_. = G 2 (sn 2 Ku) cn e'l Audn el ku ,

the integration of which requires Jnly the Jacobian elliptic functions.

For Case ii, however, the equations corresponding to Equations 29 and 30 have the different

forms; but all the functions g, have a single form such as Equation 32.

In any case, we have, after integration of Equations 28 or 32, the form

_u + -_.periodic function of Z_u = constant • 7,

from which we obtain

_u = cons:ant • 7 + a periodic function of constant • _.

It should be noted that the odd power terms in Equation 31 do not contribute any change to the

period of libration, where c 1 = 0. which corresponds to the case of libration.

DISCUSSION

The denominator of the right side of Equation 11 is a square root of a quartic of x. A general

treatment of such a case was carried out by Andoyer (Reference 11) and extended by Hagihara (Refer-

ence 12) in connection with the likration problem of asteroids (see also Reference 13). Both of them

used the _-function of Weierstrass; nevertheless, we feel the integration form described here is more

suitable for this special case, owing to the fact that only real functions are involved. For example, if

p _ 0 in Equation 10,

do_ 1

_ k 2 sin2_ 1

dU ,

where k 2 : a, from which, if 0 < _ < 1, we have sin _'1 -- sn u, which is, of course, a limiting case of

ic, etc. Thus the present work :::epresents some natural extensions of the derivation of well-known

Jacobian elliptic functions.

For the numerical computati_n, integrating Equation 17 in the literal form may not necessarily

be the best way, for a direct numerical integration of Equation 17 is more effective, since its de-

nominator generally does not become very small--otherwise, the numerical integration would lose its

validity. However, the problem of inversion of a numerical function still would remain.
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CONCLUSION

Equations 1, which have terms up to second order of j, have been solved both for the case of

small eccentricity and for moderate eccentricity. In the former, the intermediary solutions them-

selves are sufficient for the present discussion, since the solutions have an accuracy of the order of

1 for cos _ (neglecting the order of j) and of the order of j for p (neglecting j _). This accuracy cor-

responds to the order of j _ in the Hamiltonian, since p has the factor of j and the argument of the

solution is neither _ alone nor multiplied by a constant factor of order of 1, but _ multiplied by that

of order j.

On the other hand, in the second or normal cases, the solutions have the accuracy of order j for

cos _ and j s/2 for p, which corresponds to j 2 in the Hamiltonian.
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Appendix A

List of Symbols

Jacobiar elliptic functions (see pages 12, 8, and 9)

Parameler of Weierstrassian elliptic function (see page 6)

Complete elliptic integral of the second order (see page 17)

First or-Jer elliptic function associated with the _-function (see Reference 6

and page 7)

Harmon:c coefficient of the earth's potential (see page 2)

Modulus of the Jacobian elliptic function (see pages 7 and 11)

Complete elliptic integral of the first order (see page 14)

Weierstcassian elliptic function (see page 6)

Jacobiai_ elliptic function (see page 8)

Time

Period of the solutions (see page 14)

u will ectual t, except for the constant factor, if higher orders are neglected

(see page 13)

Constants

Energy constant (see page 4)

Constant factor in the argument of the Jacobian elliptic functions (see

page 12

Variable related to the eccentricity (see Reference 5 and page 2)

Mean argument of the perigee

Semi-periods associated with the Weierstrassian elliptic function (see page 7)
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